
DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 1 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

DMC Call Interface Specification

This is the API specification for the DMC (DELTA Multiple Criteria) interface

layer. It is intended to run on several platforms including Unix, PC/Windows,

and Macintosh.

The DMC interface is a glue layer to DeltaLib/DADE (DELTA Analytical Decision

Engine). DeltaLib is a general-purpose library for the evaluation of decision

frames based on the author’s Ph.D. thesis Computational Decision Analysis.

The main extensions in DMC compared to the thesis are connected to the intro-

duction of weight bases containing criteria weights. The weight bases are

similar but not equal to probability bases. In addition, they necessitate the

solving of tri-linear systems of inequalities (criteria weights, probabili-

ties and values) whereas the algorithms in the thesis solve bi-linear systems

(probabilities and values). See Chapter 6 in the thesis for a description of

the bi-linear algorithms used in DMC both for consistency checks and for the

calculation of expected values in interval decision analysis.

The DMC commands are divided into seven groups: system, structure, weight,

probability, utility, evaluation, and miscellaneous.

Algorithms and implementation by

Dr. Mats Danielson

Dept. of Computer and Systems Sciences

Stockholm University

Forum 100

SE-164 40 Kista

Sweden

Email: mad@dsv.su.se

The DMC and DeltaLib libraries are today (2002-12-01) handed over to the

company Doctor Decide AB for further development. This marks the end of the

open source access to the libraries.

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 2 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Contents

System commands .. 4
Start DMC layer .. 4
Stop DMC layer ... 4

Structure commands ... 4
Create new frame ... 4
Dispose frame .. 5
Get frame name ... 5
Load frame ... 5
Activate frame ... 5
Close frame .. 6
Add an alternative to an existing frame 6
Delete an alternative in a frame 6
Add a criterion to an existing frame 6
Delete a criterion in a frame .. 7
Add a consequence .. 7
Delete a consequence ... 7

Weight commands .. 8
Add a weight interval statement .. 8
Add a weight link statement .. 8
Change the bounds of a weight statement 8
Replace a weight statement with an interval statement 9
Replace a weight statement with a link statement 9
Delete a weight statement .. 9
Make a weight estimate .. 10
Remove a weight estimate .. 10
Add weight sensitivity .. 10
Remove weight sensitivity ... 10
Get the weight hull ... 11
Get the symmetric weight hull ... 11
Get the weight core ... 11
Get the weight intersection ... 11

Probability commands .. 12
Add a probability interval statement 12
Add a probability link statement 12
Change the bounds of a probability statement 12
Replace a probability statement with an interval statement 13
Replace a probability statement with a link statement 13
Delete a probability statement .. 13
Make a probability estimate ... 14
Remove a probability estimate ... 14
Add probability sensitivity ... 14
Remove probability sensitivity .. 15
Get the global probability hull 15
Get the local probability hull .. 15
Get the global symmetric probability hull 15
Get the global probability core 16
Get the local probability core .. 16
Get the probability intersection 16

Utility commands .. 16
Add a utility interval statement 16
Add a utility link statement .. 17
Change the bounds of a utility statement 17
Replace a utility statement with an interval statement 17
Replace a utility statement with a link statement 18
Delete a utility statement .. 18
Make a utility estimate ... 18

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 3 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Remove a utility estimate ... 19
Add utility sensitivity ... 19
Remove utility sensitivity .. 19
Get the utility hull .. 19
Get the utility core .. 20
Get the utility intersection .. 20
Get the utility order ... 20
Get the utility alt-order ... 20
Get the utility order graph ... 21
Get the utility alt-order graph 21

Evaluation commands ... 21
Evaluate frame .. 21
Get evaluation graph area ... 22
Security levels ... 23

Miscellaneous commands .. 23
Get release version ... 23
Get solver capacity ... 23
Get solver matrix size .. 24
Get platform identifier ... 24
Get solver precision .. 24
Get frame information ... 24
Get number of weight statements 24
Get number of probability statements 25
Get number of utility statements 25
Get number of criteria .. 25
Get number of alternatives .. 25
Get total number of consequences 25
Get number of consequences .. 26

Error handling .. 26
DMC error codes ... 26
DMC_DELTA_ERROR ... 26
DMC_INPUT_ERROR ... 26
DMC_OUTPUT_ERROR .. 26
DMC_OUT_OF_FRAMES ... 26
DMC_NO_SUCH_FRAME ... 26
DMC_FRAME_IN_USE .. 26
DMC_FRAME_NOT_LOADED .. 26
DMC_FRAME_CORRUPT ... 26
DMC_WRONG_FRAME_TYPE .. 26
DMC_WRONG_STATEMENT_TYPE .. 27
DMC_CONS_OVERFLOW ... 27
DMC_LICENSE_EXPIRED ... 27
DMC_NO_INTERSECTION ... 27
DMC_CONFIG_MISMATCH ... 27
DMC_MEMORY_LEAK ... 27

Get Delta error code .. 27
Delta error codes ... 27
INCONSISTENT .. 27
INPUT_ERROR ... 27
NO_MEMORY ... 28
TOO_MANY_CONS ... 28
REFERENCED .. 28
NOT_IMPLEMENTED ... 28
WRONG_RELEASE ... 28
TOO_MANY_STMTS .. 28
ATTACHED .. 28
TOO_NARROW_STMT ... 28
SOLVER_ABORTED .. 28

Get error text .. 28

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 4 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

SYSTEM COMMANDS

Start DMC layer

Call syntax: DMC_init(MAX_CRIT,MAX_ALTS,MAX_CONS,MAX_COPA,MAX_STMTS)

Return information:

OK -

ERROR – license expired

 wrong release

 config mismatch

Call semantics: Perform initialization of Delta resources and start the DMC

layer. The call parameters MAX_CRIT, MAX_ALTS, MAX_CONS, MAX_COPA, MAX_STMTS

must be exactly as defined in delta_extract.h and dmc.h. This must be the

first call to DMC.

Stop DMC layer

Call syntax: DMC_exit()

Return information:

OK - elapsed time in minutes

ERROR – memory leak

Call semantics: Release resources in Delta and DMC. Should be the last call

to DMC.

STRUCTURE COMMANDS

Create new frame

Call syntax: DMC_new_PS_frame(const char *name, int n_alts, int n_cons[])

Return information:

OK - frame number

ERROR - input error

 frame corrupted

 no core memory

 too many alternatives

 too many consequences

 out of frames

Call semantics: Creates a new probabilistic frame called ‘name’ with one

criterion and an initial structure as specified in the call. If name is an

empty string, the frame will be called NoName but the name string will not be

updated. A frame cannot have less than two alternatives at any point. Each

alternative must have at least one consequence. The frame is not loaded and

can be filled with data prior to loading.

Call syntax: DMC_new_DM_frame(const char *name, int n_crit, int n_alts)

Return information:

OK - frame number

ERROR - input error

 frame corrupted

 no core memory

 too many alternatives

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 5 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

 too many consequences

Call semantics: Creates a new deterministic frame called ‘name’ with n_crit

criteria and n_alts alternatives as specified in the call. If name is an

empty string, the frame will be called NoName but the name string will not be

updated. A frame can not have less than two alternatives at any point. The

alternatives have exactly one consequence under each criterion. The frame is

not loaded and can be filled with data prior to loading.

Dispose frame

Call syntax: DMC_dispose_frame(int ufnr)

Return information:

OK -

ERROR – no such frame

 frame not loaded

 frame corrupt

Call semantics: Dispose resources belonging to frame 'ufnr' and free the slot

for a new frame. Note: frames can only be disposed when no frame is open.

Get frame name

Call syntax: DMC_frame_name(char *fname)

Return information:

OK -

ERROR – frame not loaded

Call semantics: Returns the name of the current frame.

Load frame

Call syntax: DMC_load_frame(int ufnr)

Return information:

OK -

ERROR - no such frame

 frame corrupted

 no core memory

 frame in use

 inconsistent

Call semantics: Attempts to attach the frame 'ufnr' to Delta. Both bases are

loaded and checked for consistency. If any base is inconsistent, the frame

will not be attached.

Activate frame

Call syntax: DMC_activate_frame(int ufnr)

Return information:

OK -

ERROR - no such frame

 frame corrupted

 no core memory

 frame in use

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 6 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Call semantics: Attempts to activate the frame 'ufnr' without attaching it to

Delta. The bases are not checked for consistency. It is possible to add

statements to an activated base without consistency checks. This is used for

loading already consistent sets of statements.

Close frame

Call syntax: DMC_unload_frame()

Return information:

OK -

ERROR - frame not loaded

Call semantics: Detach the frame from Delta and free the interface for new

frames. Note: in case of internal problems in Delta, the frame might be

detached without an explicit call to DMC_unload_frame.

Add an alternative to an existing frame

Call syntax: DMC_add_alternative(int n_cons[])

Return information:

OK - alt-number

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 too many consequences

 too many alternatives

Call semantics: Append a new alternative with n_cons[i] consequences for the

i:th criterion to the frame. The new alternative receives the alt-number n+1,

where n is the previous number of alternatives in the frame.

Delete an alternative in a frame

Call syntax: DMC_delete_alternative(int alt)

Return information:

OK - number of alternatives remaining

ERROR - input error

 frame corrupted

 frame not loaded

 referenced

Call semantics: Delete alternative 'alt' from the frame. All alternatives

with higher numbers within the frame are shifted one position down.

Add a criterion to an existing frame

Call syntax: DMC_add_criterion()

Return information:

OK - alt-number

ERROR - wrong frame type

 no core memory

 frame corrupted

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 7 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

 frame not loaded

 too many consequences

Call semantics: Append a new criterion to the frame. The new criterion

receives the crit-number n+1, where n is the previous number of criteria in

the frame.

Delete a criterion in a frame

Call syntax: DMC_delete_criterion(int crit)

Return information:

OK - number of alternatives remaining

ERROR - input error

 frame corrupted

 frame not loaded

 wrong frame type

 referenced

Call semantics: Delete criterion 'crit' from the frame. All criteria with

higher numbers within the frame are shifted one position down.

Add a consequence

Call syntax: DMC_add_consequence(int crit, int alt)

Return information:

OK - consequence-number within the consequence set

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too many consequences

Call semantics: Append a new consequence to the consequence set. The new

consequence receives the number n+1, where n is the previous number of

consequences in the set.

Delete a consequence

Call syntax: DMC_delete_consequence(int crit, int alt, int cons)

Return information:

OK - number of consequences remaining in the consequence set

ERROR - input error

 frame corrupted

 frame not loaded

 wrong frame type

 referenced

Call semantics: Delete consequence 'cons' from consequence set 'crit alt'.

All consequences with higher numbers within the set are shifted one position

up.

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 8 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

WEIGHT COMMANDS

Add a weight interval statement

Call syntax: DMC_add_W_statement(struct user_stmt_rec* ustmtp)

Return information:

OK - statement number in the weight base

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too many statements

 too narrow statement

 inconsistent

Call semantics: Add the user weight statement w(crit) = [lobo,upbo] to the

weight base within the decision frame. If the base is loaded, it is checked

for consistency with respect to the new interval. In case of inconsistency,

nothing is added to the base, while for adding to a non-loaded base, the

statement is added without consistency checks (from version 1.5). The latter

is only for loading preconsistent data.

Add a weight link statement

Call syntax: DMC_add_W_statement(struct user_stmt_rec* ustmtp)

Return information:

OK - statement number in the weight base

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too many statements

 too narrow statement

 inconsistent

Call semantics: Add the user weight link w(crit1) - w(crit2) = [lobo,upbo] to

the weight base within the decision frame. The base is checked for

consistency with respect to the new link. In case of inconsistency, nothing

is added to the base, while for adding to a non-loaded base, the statement is

added without consistency checks (from version 2.06). The latter is only for

loading preconsistent data.

Change the bounds of a weight statement

Call syntax: DMC_change_W_statement(int stmt_number, real lobo, real upbo)

Return information:

OK -

ERROR - input error

 frame corrupted

 frame not loaded

 wrong frame type

 too narrow statement

 inconsistent

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 9 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Call semantics: Change the existing user weight statement w(crit) =

[old_lobo,old_upbo] or w(crit1) - w(crit2) = [old_lobo,old_upbo] to w(crit) =

[lobo,upbo] or w(crit1) - w(crit2) = [lobo,upbo] in the weight base. The base

is checked for consistency with respect to the change. In case of

inconsistency, nothing is changed the base and the call is rolled back.

Replace a weight statement with an interval statement

Call syntax:

DMC_replace_W_statement(int stmt_number, struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too narrow statement

 inconsistent

Call semantics: Replace the user weight statement (interval or link) with

w(crit) = [lobo,upbo] in the weight base. The base is checked for consistency

with respect to the new interval. In case of inconsistency, nothing is

replaced in the base and the call is rolled back.

Replace a weight statement with a link statement

Call syntax:

DMC_replace_W_statement(int stmt_number, struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too narrow statement

 inconsistent

Call semantics: Replace the user weight statement (interval or link) with

w(crit1) - w(crit2) = [lobo,upbo] in the weight base. The base is checked for

consistency with respect to the new interval. In case of inconsistency,

nothing is replaced in the base and the call is rolled back.

Delete a weight statement

Call syntax: DMC_delete_W_statement(int stmt_number)

Return information:

OK - number of statements remaining in the weight base

ERROR - input error

 frame corrupted

 frame not loaded

 wrong frame type

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 10 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Call semantics: The user weight statement (interval or link) with position

stmt_number in the weight base is deleted from the base. All statements with

higher positions within the base are shifted one position down.

Make a weight estimate

Call syntax: DMC_make_W_estimate(struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 inconsistent

Call semantics: Add the user weight estimate w(crit) = [lobo,upbo] to the

weight base within the decision frame. If the base is loaded, it is checked

for consistency with respect to the new interval. In case of inconsistency,

nothing is added to the base, while for adding a non-loaded base, the

statement is added without consistency checks. The latter is only intended

for loading pre-consistent data.

Remove a weight estimate

Call syntax: DMC_remove_W_estimate(struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 frame corrupted

 frame not loaded

 wrong frame type

Call semantics: The user weight estimate w(crit) = [lobo,upbo] in the weight

base is deleted from the base. This can be considered unlocking the estimate.

Add weight sensitivity

Call syntax: DMC_add_W_sensitivity(h_matrix lobo, h_matrix upbo)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

 inconsistent

Call semantics: The hull is replaced by a user determined orthogonal hyper-

cube in order to facilitate manual sensitivity analyses (as opposed to the

automatic contraction procedure).

Remove weight sensitivity

Call syntax: DMC_remove_W_sensitivity()

Return information:

OK -

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 11 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

ERROR - wrong frame type

 frame corrupted

 frame not loaded

Call semantics: The user determined orthogonal hypercube is replaced by the

ordinary hull.

Get the weight hull

Call syntax: DMC_get_W_hull(h_matrix lobo, h_matrix ccp, h_matrix upbo)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

Call semantics: The hull and the contraction point are returned in three

matrices lobo, ccp, and upbo indexed as [crit][alt][cons].

Get the symmetric weight hull

Call syntax: DMC_get_W_symhull(h_matrix lobo, h_matrix ccp, h_matrix upbo)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

Call semantics: The symmetric hull and the contraction point are returned in

three matrices lobo, ccp, and upbo indexed as [crit][alt][cons].

Get the weight core

Call syntax: DMC_get_W_core(h_matrix loco, h_matrix upco)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

Call semantics: The core is returned in two matrices loco and upco indexed as

[crit][alt][cons].

Get the weight intersection

Call syntax: DMC_get_W_intersection(h_matrix lobo, h_matrix upbo)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

 no intersection

 output error

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 12 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Call semantics: The call must be preceded by an evaluation. The weight base

contraction at the evaluation graph’s intersection with the contraction axis

is returned in two matrices lobo and upbo indexed as [crit][alt][cons].

PROBABILITY COMMANDS

Add a probability interval statement

Call syntax: DMC_add_P_statement(struct user_stmt_rec* ustmtp)

Return information:

OK - statement number in the probability base

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too many statements

 too narrow statement

 inconsistent

Call semantics: Add the user probability statement p(crit:alt:cons) =

[lobo,upbo] to the probability base within the decision frame. If the base is

loaded, it is checked for consistency with respect to the new interval. In

case of inconsistency, nothing is added to the base, while for adding to a

non-loaded base, the statement is added without consistency checks (version

2.06). The latter is only for loading preconsistent data. NOTE: lobo and upbo

are local probabilities.

Add a probability link statement

Call syntax: DMC_add_P_statement(struct user_stmt_rec* ustmtp)

Return information:

OK - statement number in the probability base

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too many statements

 too narrow statement

 inconsistent

Call semantics: Add the user probability link p(crit1:alt1:cons1) -

p(crit2:alt2:cons2) = [lobo,upbo] to the probability base within the decision

frame. The base is checked for consistency with respect to the new link. In

case of inconsistency, nothing is added to the base, while for adding to a

non-loaded base, the statement is added without consistency checks (version

1.5). The latter is only for loading preconsistent data. NOTE: lobo and upbo

are local probabilities.

Change the bounds of a probability statement

Call syntax: DMC_change_P_statement(int stmt_number, real lobo, real upbo)

Return information:

OK -

ERROR - input error

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 13 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

 frame corrupted

 frame not loaded

 wrong frame type

 too narrow statement

 inconsistent

Call semantics: Change the existing user probability statement

p(crit:alt:cons) = [old_lobo,old_upbo] or p(crit1:alt1:cons1) -

p(crit2:alt2:cons2) = [old_lobo,old_upbo] to p(crit:alt:cons) = [lobo,upbo]

or p(crit1:alt1:cons1) - p(crit2:alt2:cons2) = [lobo,upbo] in the probability

base. The base is checked for consistency with respect to the change. In case

of inconsistency, nothing is changed the base. NOTE: lobo and upbo are local

probabilities.

Replace a probability statement with an interval statement

Call syntax:

DMC_replace_P_statement(int stmt_number, struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too narrow statement

 inconsistent

Call semantics: Replace the user probability statement (interval or link)

with p(crit:alt:cons) = [lobo,upbo] in the probability base. The base is

checked for consistency with respect to the new interval. In case of

inconsistency, nothing is replaced in the base. NOTE: lobo and upbo are local

probabilities.

Replace a probability statement with a link statement

Call syntax:

DMC_replace_P_statement(int stmt_number, struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 too narrow statement

 inconsistent

Call semantics: Replace the user probability statement (interval or link)

with p(crit1:alt1:cons1) - p(crit2:alt2:cons2) = [lobo,upbo] in the

probability base. The base is checked for consistency with respect to the new

interval. In case of inconsistency, nothing is replaced in the base. NOTE:

lobo and upbo are local probabilities.

Delete a probability statement

Call syntax: DMC_delete_P_statement(int stmt_number)

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 14 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Return information:

OK - number of statements remaining in the probability base

ERROR - input error

 frame corrupted

 frame not loaded

 wrong frame type

Call semantics: The user probability statement (interval or link) with

position stmt_nbr in the probability base is deleted from the base. All

statements with higher positions within the base are shifted one position

down.

Make a probability estimate

Call syntax: DMC_make_P_estimate(struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 wrong frame type

 inconsistent

Call semantics: Add the user probability estimate p(crit:alt:cons) =

[lobo,upbo] to the probability base within the decision frame. If the base is

loaded, it is checked for consistency with respect to the new interval. In

case of inconsistency, nothing is added to the base, while for adding a non-

loaded base, the statement is added without consistency checks. The latter is

only for loading pre-consistent data. NOTE: lobo and upbo are local

probabilities.

Remove a probability estimate

Call syntax: DMC_remove_P_estimate(struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 frame corrupted

 wrong frame type

 frame not loaded

Call semantics: The user probability estimate for the consequence 'crit alt

cons' in the probability base is deleted from the base. This can be

considered unlocking the estimate.

Add probability sensitivity

Call syntax: DMC_add_P_sensitivity(h_matrix lobo, h_matrix upbo)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

 inconsistent

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 15 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Call semantics: The hull is replaced by a user determined orthogonal hyper-

cube in order to facilitate manual sensitivity analyses (as opposed to the

automatic contraction procedure). NOTE: lobo and upbo are local

probabilities.

Remove probability sensitivity

Call syntax: DMC_remove_P_sensitivity()

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

Call semantics: The user determined orthogonal hypercube is replaced by the

ordinary hull.

Get the global probability hull

Call syntax: DMC_get_P_hull(h_matrix lobo, h_matrix ccp, h_matrix upbo)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

 too many consequences

Call semantics: The hull and the contraction point are returned in three

matrices lobo, ccp, and upbo indexed as [crit][alt][cons]. NOTE: lobo and

upbo are global probabilities.

Get the local probability hull

Call syntax: DMC_get_LP_hull(h_matrix lobo, h_matrix ccp, h_matrix upbo)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

 too many consequences

Call semantics: The hull and the contraction point are returned in three

matrices lobo, ccp, and upbo indexed as [crit][alt][cons]. NOTE: lobo and

upbo are local probabilities.

Get the global symmetric probability hull

Call syntax: DMC_get_P_symhull(h_matrix lobo, h_matrix ccp, h_matrix upbo)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 16 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

 too many consequences

Call semantics: The hull and the contraction point are returned in three

matrices lobo, ccp, and upbo indexed as [crit][alt][cons]. NOTE: lobo and

upbo are global probabilities.

Get the global probability core

Call syntax: DMC_get_P_core(h_matrix loco, h_matrix upco)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

Call semantics: The core is returned in two matrices loco and upco indexed as

[crit][alt][cons]. NOTE: lobo and upbo are global probabilities.

Get the local probability core

Call syntax: DMC_get_LP_core(h_matrix loco, h_matrix upco)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

Call semantics: The core is returned in two matrices loco and upco indexed as

[crit][alt][cons]. NOTE: lobo and upbo are local probabilities.

Get the probability intersection

Call syntax: DMC_get_P_intersection(h_matrix lobo, h_matrix upbo)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

 no intersection

 output error

Call semantics: The call must be preceded by an evaluation. The probability

base contraction at the evaluation graph’s intersection with the contraction

axis is returned in two matrices lobo and upbo indexed as [crit][alt][cons].

NOTE: lobo and upbo are global probabilities.

UTILITY COMMANDS

Add a utility interval statement

Call syntax: DMC_add_V_statement(struct user_stmt_rec* ustmtp)

Return information:

OK - statement number in the utility base

ERROR - input error

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 17 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

 no core memory

 frame corrupted

 frame not loaded

 too many statements

 too narrow statement

 inconsistent

Call semantics: Add the user utility statement u(crit:alt:cons) = [lobo,upbo]

to the utility base within the decision frame. The base is checked for

consistency with respect to the new interval. In case of inconsistency, for a

loaded frame, nothing is added to the base, while for a non-loaded the

statement is added without consistency checks. Non-loaded addition is only

intended for loading pre-consistent data.

Add a utility link statement

Call syntax: DMC_add_V_statement(struct user_stmt_rec* ustmtp)

Return information:

OK - statement number in the utility base

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 too many statements

 too narrow statement

 inconsistent

Call semantics: Add the user utility link u(crit1:alt1:cons1) -

u(crit2:alt2:cons2) = [lobo,upbo] to the utility base within the decision

frame. The base is checked for consistency with respect to the new link. In

case of inconsistency, nothing is added to the base. Note: crit1 = crit2, two

criteria arguments required only to preserve symmetry.

Change the bounds of a utility statement

Call syntax: DMC_change_V_statement(int stmt_number, real lobo, real upbo)

Return information:

OK -

ERROR - input error

 frame corrupted

 frame not loaded

 too narrow statement

 inconsistent

Call semantics: Change the existing user utility statement u(crit:alt:cons) =

[old_lobo,old_upbo] or u(crit1:alt1:cons1) - u(crit2:alt2:cons2) =

[old_lobo,old_upbo] to u(crit:alt:cons) = [lobo,upbo] or u(crit1:alt1:cons1)

- u(crit2:alt2:cons2) = [lobo,upbo] in the utility base. The base is checked

for consistency with respect to the change. In case of inconsistency, nothing

is changed the base.

Replace a utility statement with an interval statement

Call syntax:

DMC_replace_V_statement(int stmt_number, struct user_stmt_rec* ustmtp)

Return information:

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 18 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 too narrow statement

 inconsistent

Call semantics: Replace the user utility statement (interval or link) with

u(crit:alt:cons) = [lobo,upbo] in the utility base. The base is checked for

consistency with respect to the new interval. In case of inconsistency,

nothing is replaced in the base.

Replace a utility statement with a link statement

Call syntax:

DMC_replace_V_statement(int stmt_number, struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 too narrow statement

 inconsistent

Call semantics: Replace the user utility statement (interval or link) with

u(crit1:alt1:cons1) - u(crit2:alt2:cons2) = [lobo,upbo] in the utility base.

The base is checked for consistency with respect to the new interval. In case

of inconsistency, nothing is replaced in the base. Note: crit1 = crit2, there

are two arguments only to preserve call symmetry.

Delete a utility statement

Call syntax: DMC_delete_V_statement(int stmt_number)

Return information:

OK - number of statements remaining in the utility base

ERROR - input error

 frame corrupted

 frame not loaded

Call semantics: The user utility statement (interval or link) with position

stmt_nbr in the utility base is deleted from the base. All statements with

higher positions within the base are shifted one position down.

Make a utility estimate

Call syntax: DMC_make_V_estimate(struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 no core memory

 frame corrupted

 frame not loaded

 inconsistent

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 19 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Call semantics: Add the user utility estimate u(crit:alt:cons) = [lobo,upbo]

to the utility base within the decision frame. If the base is loaded, it is

checked for consistency with respect to the new interval. In case of

inconsistency, nothing is added to the base, while for adding a non-loaded

base, the statement is added without consistency checks. The latter is only

intended for loading pre-consistent data.

Remove a utility estimate

Call syntax: DMC_remove_V_estimate(struct user_stmt_rec* ustmtp)

Return information:

OK -

ERROR - input error

 frame corrupted

 frame not loaded

Call semantics: The user utility estimate for the consequence 'crit alt cons'

in the utility base is deleted from the base. This can be considered

unlocking the estimate.

Add utility sensitivity

Call syntax: DMC_add_V_sensitivity(h_matrix lobo, h_matrix upbo)

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

 inconsistent

Call semantics: The hull is replaced by a user determined orthogonal

hypercube in order to facilitate manual sensitivity analyses (as opposed to

the automatic contraction procedure).

Remove utility sensitivity

Call syntax: DMC_remove_V_sensitivity()

Return information:

OK -

ERROR - wrong frame type

 frame corrupted

 frame not loaded

Call semantics: The user determined orthogonal hypercube is replaced by the

ordinary hull.

Get the utility hull

Call syntax: DMC_get_V_hull(h_matrix lobo, h_matrix ccp, h_matrix upbo)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

 too many consequences

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 20 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Call semantics: The symmetric hull and the contraction point are returned in

three matrices lobo, ccp, and upbo indexed as [crit][alt][cons].

Get the utility core

Call syntax: DMC_get_V_core(h_matrix loco, h_matrix upco)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

Call semantics: The core is returned in two matrices loco and upco indexed as

[crit][alt][cons].

Get the utility intersection

Call syntax: DMC_get_V_intersection(h_matrix lobo, h_matrix upbo)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

 no intersection

 output error

Call semantics: The call must be preceded by an evaluation. The utility base

contraction at the evaluation graph’s intersection with the contraction axis

is returned in two matrices lobo and upbo indexed as [crit][alt][cons].

Get the utility order

Call syntax: DMC_get_V_order(int crit, cs_matrix order)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

 too many consequences

Call semantics: The utility order of all consequences in criterion crit is

returned in a matrix order indexed as [cons1][cons2]. cons1 and cons2 are the

consequences’ total index numbers over all alternatives. Each entry pair

(cons1,cons2) is either 0 (FALSE) or 1 (TRUE). TRUE indicates that there is

information available that guarantees u(cons1) > u(cons2) in the entire

consistent space. FALSE indicates that there exists at least one point where

u(cons1) <= u(cons2).

Get the utility alt-order

Call syntax: DMC_get_V_altorder(o_matrix max_alt_order, o_matrix

max_dom_class, o_matrix min_alt_order, o_matrix min_dom_class)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 21 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

 too many consequences

Call semantics: The utility order within each alternative is returned in a

set of matrices indexed as [crit][alt][cons]. For each criterion and

alternative, the utility ordering within the alternative is represented as

dominance classes. Each class contains all consequences that possibly

dominate each other in the consistent space. The start of each class is

indicated by a number > 0 in max_dom_class (and min_dom_class), where the

number is the size of the class. A zero represents a continuing class. For

each class, the consequence numbers are given in max_alt_order (and

min_alt_order). There are two orders, for maximizing and minimizing

operations. They need not coincide. Consequently, for an ordered alternative,

the size of all classes is 1. The alt_order elements [crit][0][0] contain the

TRUE/FALSE flag for a total ordering within that criterion.

Get the utility order graph

Call syntax: DMC_get_V_order_graph(int crit, cs_matrix graph)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

 too many consequences

Call semantics: The utility order graph of all consequences in criterion crit

is returned in a graph matrix indexed as [cons1][cons2]. cons1 and cons2 are

the consequences’ total index numbers over all alternatives. Each entry pair

(cons1,cons2) is either 0 (FALSE) or 1 (TRUE). TRUE indicates that u(cons1) >

u(cons2) and that there exists no cons3 such that u(cons1) > u(cons3) and

u(cons3) > u(cons2). Then there is an arrow from cons1 to cons2 in the

corresponding graph.

Get the utility alt-order graph

Call syntax: DMC_get_V_altorder_graph(int crit, cs_matrix graph)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

 too many consequences

Call semantics: The utility alt-order graph of all consequences in criterion

crit is returned in a graph matrix indexed as [cons1][cons2]. cons1 and cons2

are the consequences’ total index numbers over all alternatives. Each entry

pair (cons1,cons2) is either 0 (FALSE) or 1 (TRUE). If cons1 and cons2 belong

to different alternatives, alt-order[cons1][cons2] is FALSE. TRUE indicates

that u(cons1) > u(cons2) and that there exists no cons3 within the

alternative such that u(cons1) > u(cons3) and u(cons3) > u(cons2). Then there

is an arrow from cons1 to cons2 in the corresponding graph.

EVALUATION COMMANDS

Evaluate frame

Call syntax:

DMC_evaluate_frame(int method, int Ai, int Aj, int ncs, e_matrix e_result)

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 22 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

DMC_evaluate_opt(int method, int Ai, int Aj, int opt, int ncs, e_matrix

e_result)

The ‘opt’ version of the call requires the caller to supply the number of the

solver desired (M1-M4), while in the standard call, the solver is selected

automatically. This can be used for evaluating frames approximately that

otherwise could not be evaluated because they are QP-hard.

The number of contraction steps is given in ‘ncs’. The valid range is from 6

(20% steps) to 21 (5% steps).

Method subfields:

Graph: 0 Relative pair

 1 Relative to set

 2 Absolute

Eval: 0 DELTA

 4 GAMMA

 8 PSI

 12 OMEGA (extended)

Hull: 0 Asymmetric

 16 Symmetric

W_con: 32 No contraction

 0 Contraction

 64 Point contraction

P_con: 128 No contraction

 0 Contraction

 256 Point contraction

V_con: 512 No contraction

 0 Contraction

 1024 Point contraction

Return information:

OK -

ERROR - input error

 frame corrupted

 frame not loaded

 output error

 solver aborted

 not implemented

 license expired

Call semantics: All alternatives are evaluated using the Delta, Gamma, Psi,

or Omega rules. For the requested alternative(s) Ai (and Aj), the result is

stored in e_result. Each result has the form of a matrix {min,mid,max} x

{contraction}, with values from increasing contraction. Currently there are

6-21 values corresponding to contractions of 0-100% in 5-20% steps. Delta and

Gamma cannot be evaluated in absolute graph mode since it is impossible to

generate an absolute scale from relative ones. For extended Omega, the

stepwise contracted core is returned. Aj is relevant only for relative pair

graph evaluations.

Get evaluation graph area

Call syntax: DMC_get_eval_area(real* area)

Return information:

OK -

ERROR - output error

Call semantics: Obtains the fraction [0,1] of the area residing above the x-

axis for a standard (cone) plot of the evaluation result. The call must be

preceded by an evaluation.

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 23 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Security levels

Call syntax: DMC_sec_level(int method, real v_min, int ncs, s_matrix

s_result)

The number of contraction steps is given in ‘ncs’. The valid range is from 6

(20% steps) to 21 (5% steps).

Method subfields:

Hull: 0 Asymmetric

 16 Symmetric

P_con: 128 No contraction

 0 Contraction

 256 Point contraction

V_con: 512 No contraction

 0 Contraction

 1024 Point contraction

Return information:

OK -

ERROR - input error

 frame corrupted

 frame not loaded

 license expired

Call semantics: For a PS-frame, the security level ‘v_min’ specified in the

call is evaluated. The result has the form of a matrix containing a number of

result values for each alternative from increasing contraction. Currently

there are 6-21 values corresponding to contractions of 0-100% in 5-20% steps

and three such sets: min, mid, and max. They are stored in the matrix

s_result[alt][set][con] where 'alt' is the sequence number of the

alternative, ‘set’ is min, mid or max, and ‘con’ is the contraction step. For

a DM-frame, the call is not allowed as the function is undefined.

MISCELLANEOUS COMMANDS

Get release version

Call syntax: DMC_get_release(char* relstrg)

Return information:

OK -

Call semantics: Obtains the release of DMC and DeltaLib. The format is

"M1.F1 (M2.F2.T2)", where M1=main, F1=functional for DMC and M2=main,

F2=functional, T2=technical for DELTALIB. User interface code must assure

that M2 matches expectations. If F2 does not match, let user proceed at own

risk. T2 is not for user actions.

Get solver capacity

Call syntax: DMC_get_capacity(char* capstrg)

Return information:

OK -

Call semantics: Obtains the capacities of the DADE solver. Returns the string

"maxcrit maxalt maxcons maxcopa (maxWstmt maxPstmt maxVstmt)" with the

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 24 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

maximum number of criteria, alternatives, consequences, consequences per

alternative, W_statements, P_statements, and V_statements respectively.

Get solver matrix size

Call syntax: DMC_get_solver_size(char* sizestrg)

Return information:

OK -

Call semantics: Obtains the matrix size of the DELTALIB solver. Returns the

string "maxrows x maxcols" with the maximum number of rows and columns.

Get platform identifier

Call syntax: DMC_get_platform(char* pfstrg)

Return information:

OK -

Call semantics: Obtains the name of the platform that DeltaLib has been

compiled for.

Get solver precision

Call syntax: DMC_get_precision()

Return information:

OK - precision number

Call semantics: Obtains the floating point precision that DeltaLib has been

compiled for. Possible precision numbers are 1=single precision or 2=double

precision.

Get frame information

Call syntax: DMC_get_frame_info(char* infostrg)

Return information:

OK -

ERROR - frame corrupted

 frame not loaded

Call semantics: Returns basic information about the current frame as a string

"Wn Pn Vn Mn". Wn is the W_base type (W0-W4). Pn is the P_base type (P0-P4).

Vn is the V_base type (V0-V3). Mn is the comparison algorithm required by the

frame (M1-M5) where M1=N-Opt, M2=V-Opt, M3=P-Opt, M4=VP-Opt, M5=QP-Opt.

Get number of weight statements

Call syntax: DMC_nbr_of_W_stmts()

Return information:

OK - number of weight statements in the current frame

ERROR - frame not loaded

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 25 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Call semantics: Returns the number of weight statements in the currently

loaded frame.

Get number of probability statements

Call syntax: DMC_nbr_of_P_stmts()

Return information:

OK - number of probability statements in the current frame

ERROR - frame not loaded

Call semantics: Returns the number of probability statements in the currently

loaded frame.

Get number of utility statements

Call syntax: DMC_nbr_of_V_stmts()

Return information:

OK - number of utility statements in the current frame

ERROR - frame not loaded

Call semantics: Returns the number of utility statements in the currently

loaded frame.

Get number of criteria

Call syntax: DMC_nbr_of_crit()

Return information:

OK - number of criteria in the current frame

ERROR - frame not loaded

Call semantics: Returns the number of criteria in the currently loaded frame.

Get number of alternatives

Call syntax: DMC_nbr_of_alts()

Return information:

OK - number of alternatives in the current frame

ERROR - frame not loaded

Call semantics: Returns the number of alternatives in the currently loaded

frame.

Get total number of consequences

Call syntax: DMC_total_cons()

Return information:

OK - number of consequences in the specified alternative

ERROR - frame not loaded

Call semantics: Returns the total number of consequences in all alternatives

in the currently loaded frame.

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 26 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

Get number of consequences

Call syntax: DMC_nbr_of_cons(int crit, int alt)

Return information:

OK - number of consequences in the specified alternative

ERROR - frame not loaded

Call semantics: Returns the number of consequences in the specified

alternative in the currently loaded frame.

ERROR HANDLING

All DMC calls (except DMC_get_errtxt() below) return an integer which serves

as an error code and information carrier at the same time. In the event of an

error, a negative number is returned. The caller should interpret the error

code and take action accordingly.

DMC error codes

DMC_DELTA_ERROR

The error occurred in the Delta solver. This value is not returned alone, but

instead added to DMC_delta_errcode().

DMC_INPUT_ERROR

One of the input parameters contained invalid information.

DMC_OUTPUT_ERROR

The requested output from the DMC function could not be generated. This

usually refers to a request for impossible evaluation data.

DMC_OUT_OF_FRAMES

The number of frames in the DMC layer has been exceeded.

DMC_NO_SUCH_FRAME

The requested frame number does not exist. Either it is not created, or the

number is out of range.

DMC_FRAME_IN_USE

An attempt to delete or in another way eliminate a frame that is currently

attached (loaded).

DMC_FRAME_NOT_LOADED

An attempt to use frame modification commands while no frame is loaded.

DMC_FRAME_CORRUPT

Internal error. The frame has been rendered corrupt, either by modifications

outside of Delta or because of an internal error in Delta.

DMC_WRONG_FRAME_TYPE

An attempt to issue a PS-only command to a DM frame or vice versa.

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 27 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

DMC_WRONG_STATEMENT_TYPE

The user statement passed in the call is inappropriate for the type of frame

currently loaded.

DMC_CONS_OVERFLOW

Too many consequences in the problem for DMC to handle. This should be

prohibited in the user interface at an earlier point.

DMC_LICENSE_EXPIRED

The license for the DMC package is time limited. The end date has passed. The

user must renew his license agreement.

DMC_NO_INTERSECTION

The current evaluation graph does not intersect with the contraction axis. No

contracted base can be returned.

DMC_CONFIG_MISMATCH

At least one of the five parameters MAX_CRIT, MAX_ALTS, MAX_CONS, MAX_COPA,

or MAX_STMTS does not have the same value in the caller’s name space as in

DeltaLib’s name space.

DMC_MEMORY_LEAK

At reconciliation time, allocated memory still remains in use even though it

should all be freed. Internal error in DMC.

Get Delta error code

Call syntax: DMC_delta_errcode()

Return information:

OK - Delta error code

ERROR - input error

 frame corrupted

 frame not loaded

Call semantics: Returns the error code from the latest DeltaLib call.

Delta error codes

In the event of a DMC_DELTA_ERROR, a problem with the request has been

detected in the Delta kernel. DMC records the error and it is passed on to

the DMC caller by DMC_delta_errcode(). The possible codes are:

INCONSISTENT

The call results in a previously consistent frame becoming inconsistent. The

call has been rolled back, and the frame is in the same state as it was

before the call.

INPUT_ERROR

An input parameter contains illegal data, for example an index out of range

or values not within given intervals.

DMC Specification - Version 2.12

Copyright 2001-2002 Mats Danielson Page 28 of 28

File DMC spec 2.12.doc Last saved by mad 2002-12-01

NO_MEMORY

The kernel has run out of memory. This is the result of allocating too little

virtual memory to the application in which the Delta solver is hosted.

TOO_MANY_CONS

The problem contains too many consequences. This should be prohibited in the

user interface at an earlier point.

REFERENCED

An attempt to remove a consequence or an alternative that still contains

references from statements. This should be prohibited in the user interface.

NOT_IMPLEMENTED

The function requested or the solver necessary for the problem at hand has

not yet been implemented. This should be prohibited in the user interface at

an earlier point.

WRONG_RELEASE

The wrong release of Delta is used. Must be upgraded to a more recent.

TOO_MANY_STMTS

The problem contains too many statements. This should be prohibited in the

user interface at an earlier point.

ATTACHED

An attempt to delete or in another way eliminate a frame that is currently

attached (loaded).

TOO_NARROW_STMT

The solver could operate in a mode where, for reasons of speed and stability,

intervals of very small size are not allowed. This excludes the use of

pointwise statements.

SOLVER_ABORTED

Internal error in Delta or an attempt to solve a problem whose size is on the

border of the solver’s capability.

Get error text

Call syntax: char *DMC_get_errtxt(int jrc)

Return information:

OK - pointer to error text

ERROR – pointer to text “- no text -”

Call semantics: Returns the text string that corresponds to the supplied DMC

error number.

